Entretien avec Nicolas Bellouin réalisé par Sorbonne Université

Climaviation, un projet innovant pour réduire l’impact de l’aviation sur le climat

Le projet Climaviation a pour ambition de mieux comprendre et quantifier les impacts climatiques de l’aviation. Il est dirigé par Nicolas Bellouin, climatologue au Royaume-Uni et titulaire de la chaire Aviation et climat à l’Institut Pierre-Simon Laplace (IPSL). Ce contributeur au sixième rapport du GIEC nous explique ici les objectifs de ce projet ambitieux qui réunit des scientifiques de l’IPSL et de l’Office National d’Etudes et de Recherches Aérospatiales (ONERA).


Dans quel contexte est né le projet Climaviation ?

Nicolas Bellouin : Face au réchauffement climatique et à la nécessité de diminuer les émissions de dioxyde de carbone (CO2), l’aviation s’est engagée dans une stratégie de décarbonation à l’échelle mondiale. La tâche est particulièrement difficile pour ce secteur économique où le CO2 reste très présent et où chaque innovation envisagée sur les avions doit être testée et approuvée avant d’être mise en place.

Dans ce contexte, la Direction générale de l’aviation civile (DGAC) a financé sur cinq ans le projet Climaviation afin d’explorer différentes solutions visant à réduire les impacts climatiques de l’aviation.

Quel est l’objectif de ce projet ?

N. B. : Chacun sait que l’aviation émet du CO2 et qu’il faut réduire ces émissions. Mais le CO2 n’est pas le seul coupable. Les moteurs d’avion émettent d’autres composés : oxydes d’azote, vapeur d’eau, particules. Si les conditions sont réunies, la vapeur d’eau et les particules forment des trainées de condensation derrière les appareils. Certaines de ces trainées persistent et continuent de s’étendre en formant de grands champs de nuages de glace qui perturbent le bilan radiatif terrestre. C’est l’un des effets de l’aviation qualifiés d’effets « non-CO2 ».

Selon les modélisations climatiques récentes, l’impact de ces effets pourrait être supérieur à celui du CO2. Mais il reste incertain en raison de la complexité des mécanismes à modéliser et des échelles à prendre en compte dans les simulations. De nombreuses questions se posent concernant la taille et les propriétés de la couverture nuageuse induite par les trainées, leur durée de vie dans l’atmosphère, la formation et la composition des cristaux de glace, l’impact d’un changement de carburant sur la chimie de l’atmosphère, etc.

L’objectif du projet Climaviation est donc de comprendre et quantifier ces effets pour mieux les prendre en compte dans les stratégies de réduction de l’impact climatique.

Quelles solutions explorez-vous pour réduire l’impact de l’aviation sur le climat ?

N. B. : L’industrie aéronautique intensifie ses efforts pour améliorer le rendement des moteurs existants ou recourir à des carburants alternatifs à faible empreinte carbone, voire à de nouveaux vecteurs énergétiques décarbonés comme l’hydrogène.

Nous nous intéressons aussi à des stratégies alternatives qui reposent en grande partie sur la flotte existante : changer l’altitude de vol, utiliser les courants ascendants, adapter l’heure des vols, etc. Si ces stratégies ne nécessitent pas forcément de changement technologique, il faut néanmoins vérifier qu’elles sont efficaces et en mesurer les impacts à court et long termes.

La DGAC a donc besoin de notre conseil scientifique pour déterminer quelles sont, parmi l’ensemble de ces solutions, celles qui, non seulement réduisent les émissions de CO2, mais aussi limitent les effets non-CO2.

Il s’agit d’un projet de recherche pluridisciplinaire mêlant des forces de Sorbonne Université et de l’ONERA. Comment s’articule cette collaboration ?

N. B. : Ce projet rassemble une trentaine de scientifiques. Parmi eux : des physiciens de l’atmosphère, des physiciens des nuages, des chimistes, des observateurs, des spécialistes de la détection automatique des formes, etc.

Les scientifiques de l’ONERA savent modéliser l’impact que va générer, au niveau de l’atmosphère, le changement d’un moteur ou d’un carburant sur une échelle spatio-temporelle de quelques secondes et de quelques mètres derrière l’avion. À l’IPSL, nous modélisons ce qui se passe à des échelles bien plus grandes : au niveau de la planète et sur plusieurs heures, années voire siècles. À travers notre collaboration, nous essayons de combler l’écart qui existe entre ces deux ordres de grandeur.

Notre ambition est de connecter les modèles de l’ONERA aux modèles climatiques développés par l’IPSL afin de construire des outils scientifiques pérennes utilisables pour estimer l’impact climatique de n’importe quelle nouvelle solution proposée dans l’aviation.

Cet article est republié à partir de Sorbonne Université. Lire l’article original.

Les solutions pour réduire l’impact climatique de l’aviation


Déplacer la souris sur le tableau pour avoir plus d’informations.

Solutions technologiques et opérationnelles CO2 Traînées/
Cirrus induits
NOx Complexité de déploiement Délai pour un déploiement à grande échelle
Compensation carbone
Diminue les effets CO2 mais efficacité et qualité de la compensation variables et difficiles à vérifier
Existant
Eviter les zones de formation des traînées
Légère augmentation due au changement de trajectoire
Diminution
Légère augmentation mais diminution possible si altitude plus basse

Moyenne

Introduction de métriques pour identifier des compromis entre effets CO2 et non-CO2 pour s’assurer d’un effet bénéfique sur le climat
10-15 ans
Vols en formation
Légère diminution due à une économie de carburant
Peu ou pas d’effets ?
Légère diminution due aux économies de carburant

Moyenne

Davantage de contraintes sur la planification des vols et la gestion du traffic aérien
Carburant désaromatisés
Faible diminution lors du vol mais potentielle augmentation lors de la production
Diminution des effets radiatifs en l’absence d’aromatiques ?

Moyenne

Introduction d’une nouvelle catégorie de carburant
Biocarburants
Diminution du CO2 par rapport au kérosène (sur l’ensemble du cycle de vie)
Diminution des effets radiatifs en l’absence d’aromatiques ?

Moyenne

Disponibilité de biomasse durables pour la production, investissement et montée en régime de la fillière, coût.
15-25 ans
Electrocarburant
Potentiellement neutre si fabriqué à partir de CO2 atmosphérique et électricité décarbonnée
Diminution des effets radiatifs en l’absence d’aromatiques ?

Elevée

Maturité technologique, rendement énergétique et besoin en électricité décarbonée, coût.
Hydrogène
Potentiellement neutre en CO2 si fabriqué à partir de sources d’énergies décarbonnées
Plus fréquentes ? Mais épaisseur optique potentiellement plus faibles et durée de vie plus faibles ?

Très élevée

Reconception complète des avions et des infrastructures de ravitaillement. Investissement associé. Développement de la production. Coût.
>30 ans

Source: Updated analysis of the non-CO2 climate impacts of aviation and potential policy measures pursuant to the EU Emissions, European Union Aviation Safety Agency (EASA), 2020

Boucher et al. (2021) : Quelle fraction du forçage radiatif du CO2 peut être attribuée à l’aviation ?

L’article complet écrit par Olivier Boucher, Audran Borella, Thomas Gasser et Didier Hauglustaine est à retouver sur:
https://www.sciencedirect.com/science/article/pii/S1352231021005847


Estimer la part du forçage radiatif du CO2 qui peut être attribuée au secteur de l’aviation peut sembler facile. En effet, les émissions de CO2 de l’aviation sont bien connues, l’augmentation de la concentration atmosphérique de CO2 est bien observée et les impacts radiatifs du CO2 sont bien compris et quantifiés. Cependant, il existe également un certain nombre de facteurs de complication : le forçage radiatif du CO2 dépend logarithmiquement de la variation de la concentration atmosphérique et l’efficacité des puits naturels de CO2 évolue dans le temps. Tous ces effets doivent être pris en compte si l’on veut procéder à une attribution correcte.

Une méthode populaire, utilisée par Lee et al. (2021) et d’autres, est la méthode d’attribution résiduelle, par laquelle le forçage radiatif pour un secteur particulier (le secteur de l’aviation dans ce cas) est calculé comme la différence entre le forçage radiatif total du CO2 et le forçage radiatif du CO2 si ce secteur particulier n’avait pas existé. Cependant, cette méthode présente un inconvénient majeur qui n’a pas été pris en compte par les auteurs précédents. Le forçage radiatif du CO2 n’étant pas linéaire en fonction de la concentration, le forçage radiatif total de tous les secteurs considérés ensemble n’est pas le même que la somme des forçages radiatifs de chaque secteur considéré individuellement. En outre, l’aviation se distingue de nombreux autres secteurs en ce qu’elle est apparue relativement tard dans la période industrielle. Il est donc essentiel de différencier l’impact des émissions précoces et tardives car elles ne contribuent pas de la même manière à la concentration atmosphérique et au forçage radiatif actuels. L’aviation a commencé il y a seulement quelques décennies, ses émissions peuvent donc contribuer relativement plus à la variation des concentrations de CO2, mais relativement moins au forçage radiatif du CO2 en raison de la dépendance logarithmique.

Différentes méthodes existent pour résoudre ces problèmes. Dans cette étude, nous avons utilisé les méthodes d’attribution proportionnelle, différentielle et par tranches de temps. Les deux dernières méthodes nécessitent de calculer la concentration de CO2 au temps t due aux émissions de l’aviation et de toutes les activités anthropiques jusqu’à un temps t’ avant le temps t. Nous avons utilisé le modèle compact du système terrestre OSCAR et les données historiques des émissions de CO2 pour estimer les différentes valeurs. Cela nous permet de tenir compte de la façon dont la concentration de CO2 diminue lorsque les puits naturels séquestrent le CO2 émis au fil du temps.

Nous avons constaté que les méthodes les plus rigoureuses (les méthodes proportionnelle, différentielle et par tranches de temps) conduisent à un forçage radiatif du CO2 par l’aviation supérieur de 20 %, 13 % et 12 % à la méthode marginale qui sous-estime le véritable forçage radiatif du CO2 par l’aviation. Toutefois, cela est compensé par la contribution plus faible à l’augmentation de la concentration atmosphérique de CO2 que nous avons estimée à l’aide de notre modèle bien calibré. Nous estimons que l’aviation a contribué à hauteur de 2,18 ppm à l’augmentation de la concentration atmosphérique de CO2 en 2018, ce qui est inférieur aux valeurs de 2,9, 2,4 et 2,4 ppm trouvées dans une étude précédente reposant sur des modèles moins sophistiqués. Notre étude fournit donc une base et une méthodologie claires pour les évaluations futures de l’impact de l’aviation sur le cycle du carbone et le forçage radiatif du CO2.